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A B S T R A C T

Purpose: GNRB is an arthrometer and alternative diagnostic method less expensive than MRI and more
accurate than KT-1000 in Anterior Cruciate Ligament (ACL) tears detection. Dynamic knee laxity tests are more
complex to analyze and will require a new solution of universal interpretation. The hypothesis is that using a
solution based on Artificial Intelligence (AI) will allow us to obtain a more accurate and robust non-invasive
diagnostic method than the current solution with three laxity thresholds.
Method: AI can enhance the reliability of this analysis by utilizing advanced algorithms and incorporating a
wide range of additional parameters, leading to more precise diagnostics. The existing process solely rely on
laxity differences obtained from the device, overlooking influential factors like clamping force. By considering
a broader set of parameters and employing well-calibrated models a comparative study was performed between
different Machine Learning (ML) models and Ensemble Learning to get the best compromise. The correction
process will leverage statistical analysis of the current solutions.
Results: Association of Voting, Stacking and threshold laxity methods results report a 6% increase in accuracy
and approximately 13% improvement in tear detection compared to the current solution with 1384 GNRB®

measurements. Predicted diagnoses are also more prone to new data from patients unknown to the model and
confirmed using a validation database.
Conclusion: A first ML model was introduced in ACL tears detection using GNRB device. GNRB coupled with
ML was encouraging with better results than the current static diagnostic method. It could be integrated and
recommended as a complementary solution to MRI.
. Introduction

Anterior cruciate ligament (ACL) rupture is a common knee injury
hat involves complex movements such as cutting and pivoting. The
iagnosis of this pathology is a public health issue because a patient
ust consult an average of three doctors to obtain a result (Micheo

t al., 2010). The reliability of ACL tear diagnosis is currently depen-
ent on the experience of the healthcare professional conducting the
linical examination, which includes Lachman test (Branch et al., 2010;
org et al., 1976). However, in many cases, further examinations such
s MRI may be required to confirm the diagnosis. MRI is the most
ommonly used non-invasive examination for diagnosing ACL tears,
lthough partial rupture, scanning technique, or knee pain impacts
ts accuracy (Chang et al., 2013; Crawford et al., 2007; Ebrahimipour
t al., 2014; Phelan et al., 2016). Less expensive and easier solutions
ithout radiation exposure have therefore been developed. Moreover,
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it cannot directly assess knee laxity and is mainly used to assess the
associated tears.

In the 1980s, Americans introduced the KT1000 with dynamic
laximetry (Balasch et al., 1999). It measures the relative anterior tibial
drawer movement to the femur, providing an objective measurement
of tibial translation using an arthrometer. The Rolimeter (Schuster
et al., 2004), developed by Roland Jacob, and stress radiography via
Telos (Pässler & März, 1986) have been introduced as complementary
diagnostic methods. However, many factors can affect the quality of
the results, such as examiner experience, clamping force, positioning,
or leg rotation. As a result, a large body of literature reports the
inherent inaccuracy and poor reproducibility of these devices, resulting
in subjective and unreliable results (Bouguennec et al., 2015; Collette
et al., 2012; Jenny et al., 2017; Lefevre et al., 2014). Therefore, a new
arthrometer, the GNRB®, has been developed.
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Table 1
Comparison of results obtained in 8 different studies using the GNRB device and/or MRI, based on two criteria: sensitivity (Sn) and specificity (Sp). Each study includes its own
private data and selection criteria, resulting in a limited number of data points, which explains the heterogeneous results.

GNRB® MRI

Complete Partial Complete Partial

Sn Sp Sn Sp Sn Sp Sn Sp

Robert et al. (2009) 70% 99% 80% 87%
Klouche et al. (2015) 92% 96% 92% 98%
Di Iorio et al. (2014) 72% 84% 92%
Beaurain (2020) 73% 62% 76% 30%
Lefevre N 84% 81% 87% 87%
Beldame J 62% 75%
Phelan et al. (2016) 87% 93%
Bohu et al. (2012) 32%
The GNRB® device (Genourob, Laval, France) represents the pi-
neering automated dynamic laximetry (ADL) system. It is one of
he most effective non-invasive methods with superior accuracy and
eproducibility than other devices. Saravia et al. (2020). However, the
iagnosis is solely based on the absolute difference in laxity measured
t 134 N between the healthy knee and the pathological knee according
o three thresholds suggest by the manufacturer (Genourob, Laval) : 0
o 1.5 mm (healthy) ; 1.5 to 3.0 mm : (partial tear) and above 3 mm
total tear)

This static approach is not universal and explains the large differ-
nces in sensitivity and specificity obtained in different studies that can
each more than 20% (Beaurain, 2020). Others question the relevance
f the thresholds and ask that they be re-evaluated (Mouarbes et al.,
018).

The hypothesis is that relying solely on the difference in laxity
easured at 134 N may not be sufficient to achieve reliable results for
atients worldwide, considering the recommended thresholds. There-
ore, a new method is proposed in this study, which using a Machine
earning (ML) model to incorporate a broader range of parameters
uch as age, gender, height, weight, tightness, compliance, and other
elevant data to enhance the accuracy of the diagnosis. The following
roblem can thus arise : Would the set of measurements performed by
he GNRB® and the patient’s data allow us to obtain a more accurate

and universal solution using Machine Learning? The study assembled
the largest database with 1384 GNRB® measurements from healthy and
injured patients to address this scientific lock.

Firstly, GNRB® limitations will be discussed to explain the contribu-
tion of the proposed solution to the field of medicine. For this purpose,
complementary approaches based on Machine Learning will suggest,
each with improvements to reach an optimal ratio of sensitivity and
specificity. Finally, the best solution will be confirmed through cross-
validation using a new database collected at the Brest Hospital (France)
to affirm or refute the hypothesis.

Intelligent decision algorithms for ACL tear detection will, to our
knowledge, attend a first in the literature. It could then allow ob-
taining a complementary diagnosis more reliable than the existing
solutions thanks to the consideration of a large number of data and
parameters. The decision to explore AI is based on its remarkable
ability to ‘‘grasp general medical principles and apply them to new
patients’’ (Obermeyer & Emanuel, 2016).

2. Materials and methods

Accurate clinical detection using non-invasive methods is crucial for
determining the most effective treatment approach. Hence, this article
primarily focuses on the GNRB® as an attempt to enhance the accuracy
f its diagnosis. Nonetheless, arthroscopy is considered as the ‘‘gold
tandard’’ in numerous studies due to its high reliability, as it allows
irect observation of the condition of the ACL by the surgeon (Crawford
t al., 2007). Operative reports will serve as the basis for comparison
hroughout the study and provide the targets for ML models.
2

2.1. GNRB® and results limitations

The GNRB® is based on the Lachman (Torg et al., 1976) test but
in an automated way to guarantee a high reproducibility and optimal
knee flexion of 20◦ (Collette et al., 2012). While this explains the high
reproducibility and accuracy, the universality of GNRB® diagnostics
can be questioned. Table 1 shows a significant heterogeneity of results
which can be explained by :

• an apparent lack of transparency for use especially for the clamp-
ing force which impacts the Laxity measurement (Alqahtani et al.,
2018; Bouguennec et al., 2015). The GNRB® documentation rec-
ommends a maximum difference of 20 N between two measure-
ments;

• the fact that the difference in laxity measured at 134 N is not
universal and uses their own thresholds. Studies suggest a re-
evaluation, especially for the 1.5 mm threshold (Mouarbes et al.,
2018);

• the GNRB® allows for multiple measurements from 67 N to 200
N (Robert et al., 2009), but not all of the data are exploited. Other
factors could also be considered, including patient gender, which
has not been reported;

Due to more consistent and accurate results (Table 1), MRI remains
the best method to date. On the other hand, dynamic laximetry, which
allows economic and societal benefits while avoiding radiation, needs
to be improved to be recommended in the same way as MRI (Gustafsson
et al., 2020).

2.2. DataBase design

The first step is to obtain a balanced and realistic database because
all the models proposed afterward will depend on the choices made.

2.2.1. GNRB® data selection
A GNRB® database of 30,000 measurements performed on 1840

patients over a period of 2 ± 7 months after injury between 2008 and
2019 with an average of 30 ± 12 years old. MRI scans are also and
have been performed in several centers using a Siemens or Philips 1.5
T MRI scanner according to a standard protocol for the knee: sagittal
fat-suppressed (FS) T2-weighted, sagittal proton density (PD)-weighted,
axial FS PD-weighted, coronal T2 and PD-weighted images. No sagittal
or coronal oblique planes were performed in this series.

They have allowed us to prepare a batch of 5000 healthy patients
and 869 with arthroscopically confirmed ACL rupture. Each consists of
a unique set of measurements at diverse forces (between 67 N and 250
N) on one healthy and injured knee (or two healthy knees) of the same
patient. They had to be made the same day under similar conditions
(clamping force less than 20N). All the choice explains why the number
of exploitable data is voluntarily reduced.

The training and test base contains 85% of patients against 33% in
the ideal because there are three classes. A model with the dominance
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of one group in its training set will tend to predict the majority class and
must be corrected. An arbitrary selection of healthy patients reduced
them to 515 (36%) with 492 complete tears (36%) and 377 partial tears
(28%). Partial LCA ruptures represent less than 30% because they are
less operated than complete ruptures.

2.2.2. Input parameter selection
Machine learning algorithms require that the input parameters be

carefully chosen and present on all samples. Parameters allow the
models to establish links between the training data and the arthroscopy
diagnoses that are the reference. Above 150 N, a modest proportion
of patients have laxity measurements. To maintain the 1384 samples,
we could keep GNRB® tests performed only at 67 N, 89 N, and 134
N. The same problem is observed in Klouche’s study (Klouche et al.,
2015) on the difficulty of reproduction in the concrete case if the
force applied is too great. The slope coefficient P2 calculated using the
laxity measurements is retained. This aligns with Bercovy’s (Bercovy &
Weber, 1995) description that laxity alone is not a sufficient parameter
to describe the biomechanical behavior of the ACL

Clamping force is accepted as a critical parameter (Alqahtani et al.,
2018; Bouguennec et al., 2015) and can be a new input parameter in the
same way as the patient’s gender or age. Pearson’s coefficient confirms
that the clamping force impacts the quality of the measurements with
a score above 0.40 (one knee) and 0.22 (laxity difference). Gender
had similar scores, unlike age (score < 0.10), which was therefore
ignored as an input parameter. These results are consistent with a
recent study (Klasan et al., 2020) showing that male investigators had
a significantly higher mm laxity reading than females.

The input parameters are the laxity measurements at three transla-
tion forces (67 N, 89 N, and 134 N), the P2 coefficient, the clamping
force, and gender.

2.2.3. Validation of the panel with respect to GNRB recommendation
Once the complete database has been created, it seems important to

check the consistency of the data. The GNRB® documentation advises
to keep the measurements only if the difference in clamping force is
less than 20 N. Retain 5% ineligible data to add a bias to the models
by imposing a greater generalization on them (Fig. 2).

Fig. 2 shows that the data are consistent given the three thresholds
analysis with a specificity above 95%. However, several samples with
partial and total tears have a laxity difference of less than 1.5 mm
confirming the previous state of the art. The accuracy observed with
this dataset is 70% with the three threshold diagnosis methods and is
therefore consistent. The current solution does not seem robust to a
random selection of measurements, although it is admissible.

2.3. Data mining using machine learning

The second stage is to establish the Machine Learning algorithms to
maximize the differentiation between a healthy and an ACL tear.

2.3.1. Most popular techniques
No type of machine learning algorithm is better than the others.

The choice depends on the problem, the number of input variables (6),
samples (1384), and the issue. Our problem is to predict a diagnosis
among three classes: healthy (0), partial tear (1), or total tear (2).
Algorithms like Naïve Bayes used for textual prediction are not suit-
able.

Regression, Clustering, and neural network techniques (Mahesh,
2020; Zhou, 2021) have been implemented with the database. The first
two methods are unsuitable for the problems because there is no linear
relationship and different scales between the data. In the case of neural
networks, interpretability was complex, and the limited amount of data
made it difficult to ensure reliable and robust results. Increasing the
amount of various data would allow us to solve this problem, but we
decided not to study it because of the risk of artificial data (Hairy,
2021). All these techniques have therefore been discarded.
3

Support Vector Machine (SVM) (Zhou, 2021) techniques reduce the
classification problem to a hyperplane. Several models were trained
(e.g SVC — Support Vector Machine or BGD — Batch Gradient De-
scent), but only SGD was retained due its high sensitivity. The results
using the SVC algorithm seems promising because the separation is
likely to be a straight line parallel to the x-axis around 1.5 mm.
The choice was to select SGD due to its better performance (speed
& accuracy) and ability to adapt to new data in real-time. It is the
first study with AI to diagnose ACL tears, and new data can be added
regularly, which is a significant advantage.

The 3D representation (Fig. 2) shows that each patient has at least
four neighbors with the same result. The K-plus-neighbor algorithm is
based on this principle and makes a prediction based on the similarities
of a reference set. In addition to being easy to implement and highly
adaptable to complex data, Knn is robust to noisy data. It should be
accurate, especially considering that patients are in batches of 4-5 with
the same diagnosis. Ultimately, it aims to approach human analysis by
comparing measurements with those of other patients who have similar
results to make a diagnosis. Consequently, this model should always
be included as a reference due to its qualities and adaptability to the
problem.

Decision trees are based on the same principle as GNRB®’s analysis
with higher conditions and could be worthwhile to exploit. The decision
trees were excluded due to the requirement for a shallow depth to
avoid overfitting. As a result, the diagnoses were primarily based on
differences in laxity, leading to inferior results. A single tree cannot cap-
ture the relationships between all the parameters. It excludes variables
considered less significant than, for example, laxity. An alternative
approach would be to use a random forest instead of a single tree,
which provides a robust solution that incorporates all variables.

2.3.2. Ensemble learning
Ensemble learning techniques are based on the assumption that

combining methods with different predictions would result in a new,
more accurate solution (Learnia, 2022; Zhou, 2021). However, three
conditions had to be fulfilled :

1. no model should have an accuracy of less than 50;
2. the predictions of each model must be sufficiently different;
3. a large amount of data is required;

The Bagging consists (Learnia, 2022; Zhou, 2021) of training an
algorithm on different parts of the training set to obtain the most
varied predictions possible. Of all the labels, the one most present
will correspond to the predicted diagnosis. One of the most popular
algorithms is RandomForest (RF), which should enable effective detec-
tion of ACL ruptures despite sometimes very close measurements. It
combines predictions from multiple decision trees, which helps reduce
the bias and variance inherent in a single decision tree. This allows for a
robust interpretation of the data, even in cases where the relationships
are non-linear and the interactions between variables are subtle. Thus,
this model addresses the issues associated with previous decision trees,
making it an excellent choice.

Boosting algorithms (Learnia, 2022; Zhou, 2021) such as GradBoost
and AdaBoost were excluded due to poor sensitivity–specificity trade-
off. The main criterion for their exclusion is a high sensitivity to outliers
as well as the risk of overfitting. Database include measurements that
are heterogeneous depending on the clamping force and the patient,
who may be hypermobile. Although these flaws can be mitigated, early
implementations were strengthened because a decrease in diagnostic
accuracy was noticeable.

The machine learning algorithms of Voting and Stacking have been
subject to a more in-depth study due to their numerous advantages. The
first advantage is that combining multiple individual models should
result in a final model that is more accurate, robust, and generalizable.
The second advantage is the ability to model more complex phenomena
than what an individual model could achieve. Among the most accurate
models mentioned in the previous section, a wise choice has to be
made:
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Table 2
Comparison of several supervised learning algorithms and thresholds methods using accuracy, sensitivity, and specificity based on three diagnoses: healthy, partial tear, or complete
tear. The incorporation of tear-type precision highlights the most accurate method for classifying the type of tear. Conducted using cross-validation and 1384 GNRB measurements

Thresholds Knn SGD RForest Vote Stack New_Method

Accuracy (all diagnosis) 69.49% 69.56% 67.80% 68.62% 69.72% 69.35% 75.64%
Sensitivity (all diagnosis) 80.71% 91.50% 84.26% 92.70% 91.80% 92.77% 93.32%
Specificity (all diagnosis) 97.30% 91.55% 96.28% 89.18% 91.52% 90.01% 94.50%
Precision for partial ACLs 40.95% 38.62% 15.48% 38.63% 37.89% 36.32% 56.02%
Precision for complete ACLs 62.40% 70.24% 77.97% 60.92% 71.58% 73.00% 70.67%
NPV 74.79% 86.39% / / 86.81% / 89.06%
PPV 98.07% 94.84% / / 94.84% / 96.72%
PPV_Partial 56.30% 52.16% / / 52.39% / 62.82%
PPV_Complete 69.66% 61.88% / / 61.77% / 69.05%
• voting method (Learnia, 2022; Zhou, 2021) use different algo-
rithms trained on the same data. The difficulty lies in their
selection and the weighting of their predictions for the final deci-
sion. The main advantage of this technique is the identification
of the patterns that have contributed to the final predictions.
Several configurations showed that it was essential to keep the
KNN model (with weight = 2). The choice was to associate
only Forest model (weight = 1) to emphasize lesion detection
(specificity). No other models were added, such as SGD, as it
did not improve accuracy. The best configuration combines 2KNN
+ 1RForest to achieve optimal distinction between healthy and
affected patients.

• stacking method (Learnia, 2022; Zhou, 2021) replaces the major-
ity label selection of the voting technique by applying a model
named ‘‘MetaClassifier’’ (e.g. LogisticRegression). It will come to
play the role of the judge to decide which prediction has the best
chance to be valid. This time, a third model will be added to those
selected during Voting (Knn & RForest). The objective is to add
predictions that are significantly different in order to force the
meta-classifier to generalize. The choice has been made for SGD
in order to maximize the detection of total admitted ruptures. The
low precision for classifying an LCA as healthy should enhance
sensitivity due to the high precision of Knn & RForest. This is a
compromise as sensitivity is expected to decrease. Therefore, the
SGD, KNN, and RandomForest configuration may not be optimal.
However, it is the best configuration obtained after successive
evaluations involving multiple models;

.4. New diagnosis process

The study could have stopped at the evaluation of the last two
odels, Voting and Stacking, as it already represents an innovation in

he absence of studies for diagnosing an ACL rupture. The hypothesis
as made that it was possible to find new interpretations of the data
nd machine learning models to achieve even more accurate diagnoses.
his section aims to innovate by combining the current static methods
ith an AI model, for example. The hypothesis is that using the most
ccurate model (Voting) and reinforcing its decisions with a precise
upture detection model (Stacking) and another model for healthy
atients (Three thresholds) would be relevant (Table 2). Additionally,
ew interpretations of the data can be made.

.4.1. Input parameters and interpretation
The first modification was to increase the impact of the laxity mea-

urement to 134 N based on Klouche’s assumption that a higher trans-
ation force will result in higher accuracy. The experiments showed
hat there was no gain but a decrease in accuracy. The fact of not
bserving a gain remains coherent because it allows a greater diversity
f measurements and a generalization of the model thanks to a dynamic
nalysis of the data.

A second assumption is that a healthy patient would obtain a mea-
urement close to zero against negative values in an ACL tear. Changing
he interpretation of laxity could increases accuracy and improves the
4

Fig. 1. The results of the statistical analysis demonstrate the probability that a diag-
nosis based on the proposed 3 mm threshold is correct. This threshold is recommended
by the GNRB device manufacturers.

discrimination between healthy. Consequently, the newly implemented
diagnostic method will use the relative difference. This is a first key
differentiating factor in implementing a new method in addition to AI
and should increase sensitivity with limited impact on specificity to
achieve a rate beyond 90%.

2.4.2. Increasing sensitivity and ACL tears distinctions
This part proposes a solution that no longer involves comparing but

rather associating three diagnostic methods (Voting, Stacking, Thresh-
olds) in order to leverage the advantages of each method. Indeed, this
approach involves creating a meta-model, similar to ensemble learn-
ing methods like voting, by combining multiple diagnostic methods
together.

First change is to support or modify voting decisions based on
statistical analysis. The study analyzes the distribution of measurements
according to the diagnoses to demonstrate the proportion in which a
diagnosis is correct based on the thresholds suggested by the GNRB
device manufacturer (Fig. 1). It allows for influencing the predicted
result by the voting method using the thresholds in two well-defined
cases:

• beyond this threshold, there are less than 1% of patients without
tears. A complete tear will then replace the AI prediction in the
case of a healthy patient;

• there are 30% of partials and 70% of complete tears beyond
3 mm. If the result is a tear (partial or total or 𝛥 > 3.0 mm), a
probability table ([0; 0.30; 0.70]) will be added to the predictions
to accentuate the diagnosis in favor of a total rupture;

Beyond the change in the interpretation of values, which is a new
approach, reinforcing the diagnosis through statistical analysis is a
significant addition. This modification affects the probability of a diag-
nosis being true after a prediction by the trained models. This addition
is a deliberate choice to improve the distinction between partial and
complete ruptures. The final modification involves reusing part of this
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Fig. 2. Laxity measured of healthy and torn patients at 134 N as a function of clamp force, P2 slope coefficient with an arthroscopy result : healthy (green) ; partial tear (orange)
; complete tear (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
analysis to associate, rather than compare, the solutions (Voting and
Thresholds) by incorporating the Stacking model as a decision criterion.
The aim is to achieve a model with the highest possible accuracy.

The second modification involves using the stacking and threshold-
ing solution to improve the diagnostics made by the Voting method.
The stacking ensemble learning method has proven to be the most
accurate technique for detecting and classifying a rupture as complete
(Table 2). Therefore, its combination with the thresholds defined by
the manufacturers should increase the sensitivity and qualification of a
rupture in two cases:

• to assert a complete rupture if the difference in laxity is superior
at 3 mm by ignoring that of the voting method

• to correct a diagnosis of a healthy patient if the difference in laxity
is greater than 1.5 mm and the Stack model admits a rupture. The
diagnosis will be a partial tear as the Voting method defines the
patient as healthy.

• in addition, in the case of a lesion detected by the Voting model, it
is also possible to increase the rate of partial lesions. If the laxity
difference is less than 1.5 mm and the Stacking model predicts
at most partial rupture, the diagnosis will be a partial tear.
Otherwise, the prediction of the Voting model will be retained
as it is the most accurate, especially if the laxity difference is
between 1.5 mm and 3.0 mm.

.4.3. New diagnostic process with diagram explanation
By incorporating all the suggested improvements from the previous

ubsections, it is possible to achieve a new diagnostic process. This
rocess combines statistical analysis to reinforce the decisions of the
elected ensemble Machine Learning models: Voting (2Knn + RForest)
nd Stacking (Knn + SGD + RForest). The aim is to achieve a better
rade-off between sensitivity and specificity while improving the quali-
ication of a rupture as either partial or complete. Fig. 3 represents the
ew diagnostic suggested as a process diagram.

Firstly, the left part aims to improve the qualification of ruptures
efined as partial or complete. Once ACL tear is diagnosed by the
oting method, a first condition (𝛥 < 3.0 mm) aims to align with the

analyses conducted in Section 2.4.2:

• When exceeding 3 mm and the second condition (stack_label=2)
fulfilled, it will be possible to classify the rupture as complete,
regardless of the label predicted by the first model (Voting).
Otherwise, the probability table is added to the one provided by
the voting decision. The aim is to reinforce the idea that a patient
has a complete rupture without forcing it.
5

• On the contrary, if the laxity difference is less than 3 mm and
1.5 mm and the second model (Stacking) does not detect a
complete rupture, it will be reclassified as partial. The hypothesis
is that considering a total tear is likely an overstatement if two
methods consider the LCA healthy or partially tear. If the condi-
tion (𝛥 < 1.5 mm + stack_label < 2) is not met, the most accurate
method (voting) is used.

The right part of the diagram aims to increase sensitivity and the
rate of correctly diagnosed partial ruptures :

• The first condition (𝛥 < 1.5 mm) confirms the prediction made
by the Voting model since this diagnostic threshold accurately
identifies patients as healthy.

• The second condition (stack_label = 2) reclassifies the initial
diagnosis (vote_label=0) as having a partial lesion if the Stacking
model predicts a tear. This modification should improve the
diagnostic rate as Stacking is more precise in detecting a rupture,
and the 1.5 mm threshold supports its choice.

• The last condition follows the analyses in Section 2.4.2, showing
that ACL tears should qualify when the absolute laxity difference
is above 3 mm. To support a diagnosis in favor of a rupture
(partial or complete) without imposing the decision probability
table will be applied.

2.5. Statistical analysis

Statistical analyses were performed using XLSTAT (Addinsoft, Paris,
France), a software suite for data analysis and statistics in Microsoft Ex-
cel (Microsoft Corporation, Redmond, Washington, US). Confusion ma-
trices were used to compare the ML models and assess the significance
of differences, using sensitivity, specificity, positive predictive value,
and negative predictive value as indicators of proportions. Significance
was set at 𝑝 < 0.05 for all analyses.

Simultaneously, the Matplotlib visualization library plot ROC curves
for five different approaches evaluated on the same portion of the
dataset (training and testing). It provides an overall measure of the per-
formance of a machine-learning model and facilitates the comparison
of different approaches.

All hyperparameters were automatically selected to achieve the best
trade-off between accuracy and loss during model training. Choices
were checked manually to ensure consistency, such as the optimal
number of neighbors K, which was 6, consistent with an interpretation
of Fig. 2.
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Fig. 3. Visualizing the Process of the Proposed New Diagnostic Methods through Graphic Representation.
3. Results

All methods compare the same data using successive cross-vali-
dation with the same parameters: sex, relative difference of laxity (67
N, 89 N, 134 N) and P2 coefficient. The objective is to ensure that
the predicted diagnoses are not arbitrary or too specific to the training
data. They use the relative difference in laxity measurement because
it increases the accuracy by 4% and the distinction between my two
types of ACls tears by 2%.

3.1. AI method comparisons

The accuracy of decision trees was about 5% lower than that of
SGDs, leading to their exclusion. SGD was the second-best method,
with a sensitivity close to 90%, excluding ensemble learning algorithms
(Table 2). By using standard normalization to maximize accuracy, the
KNN algorithm achieved a detection rate (specificity) of over 85% and
sensitivity above 90%.

Based on the experimentation results presented in Table 2, the
GNRB® solution recommended for diagnosis has an accuracy equiv-
alent to 70% as three other methods. However, artificial intelligence
6

algorithms outperformed the three-threshold solution, achieving a di-
agnosed rupture rate of 81% and an accuracy of 69.50%. Although the
Random Forest algorithm did not perform as well as KNN, it could im-
prove specificity. This explains why the Vote method, which combines
multiple algorithms, can correctly distinguish a healthy ACL from a
ruptured ACL with rates higher than 91% (sensitivity + specificity) and
appears to be the most efficient solution at this stage.

The ROC curves demonstrate (Fig. 4) that the solution using the
three thresholds is significantly less effective than the AI solutions, as
it consistently falls below the other models. The curves for the Voting
model consistently outperform the others, indicating that this model
has better classification performance across all decision thresholds.
However, Table 2 shows that the Stacking model has an area of 0.87
compared to 0.84 for complete injuries, confirming its usefulness in
qualifying this type of rupture. The standalone KNN model performs
worse than the Voting and Stacking models, further reinforcing the
choice of model combination to achieve even higher precision.

3.2. Evaluation of the proposed new AI-based method

The new ML model provided results that were at least slightly infe-
rior or superior to the thresholds method with no significant differences
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Fig. 4. Comparative evaluation of machine learning models (KNN, Voting, Stacking) and the reference method using the three laxity thresholds to assess the improvement of the
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(𝑝 > 0.244) for Specificity, VPP, and VPP_Complete. For other results
like Accuracy, Sensitivity, Precision (partial or complete), VPN, and
VPP_Partial, they were better with a significant difference (𝑝 < 0.001).
t explains significant gain for qualifying a tear as partial is greater
han 56% (Table 2) with no drop in the rate for total ruptures. Table 2
lso confirms that for positive and negative predictive values (PPV and
PV), our method is the most efficient with an optimal error rate.
inally, the best discrimination and accuracy between a healthy and
torn ACL is obtained with rates above 93%, justifying the choice to

alidate all the decisions and hypotheses of part 2.4.
Comparing the new ML method with other individual ML models,

esults were also at least equivalent with no significant differences
𝑝 > 0.189) for Sensitivity except for SGD with better results (𝑝 < 0.001),
pecificity, Precision for complete ACLs except for SGD where results
ere worse (𝑝 < 0.001), and for RForest where results were better
𝑝 < 0.001), VPN and VPP. Results were significantly better (𝑝 < 0.001)
ompared to the other ML models for Accuracy, Precision for partial
CLs, VPP_Partial, and VPP_Complete.

When comparing the areas under the curves (Fig. 4), the proposed
olution consistently outperforms the others, although the difference
emains small compared to the Voting model, which is the second most
ccurate method. The new model is the only one to achieve an area of
.90 for detecting complete rupture and almost 1.0 for detecting partial
esions (Fig. 4). These results demonstrate its capability to accurately
lassify all three possible diagnoses (healthy, partial tear, or complete
ear). The gains are around 0.05 compared to traditional ML solutions
nd nearly three times higher with the static analysis based on laxity
ifference using three thresholds (Fig. 4).

MRI is recommended to establish an anterior cruciate ligament
ear, whether partial or complete. However, only 169 patients have
n MRI result and a valid GNRB test. Each measure is removed from
 t

7

he training base to compare their diagnoses with MRI diagnoses. The
eference remains the arthroscopy result.

The comparison shows that the proposed solution detects ruptures
etter than MRI (sensitivity) by more than 1% (Table 3). The difference
s insignificant since some of the MRI results are from the 2010s.
urthermore, MRI provides a better diagnosis if the rupture is total.
n the other hand, GNRB® with Machine Learning remains more
fficient in differentiating a partial tear from a complete tear (Table 3).
ignificant gain proves that this device is interesting to use before, after,
r without MRI because it is less expensive and simpler to implement.
nly the threshold method, which reaches barely 70% detection, is

nferior and should not be recommended.

.3. Validation of the robustness

The Brest Hospital could evaluate the proposed model using 88
NRB® measurements from former patients following the device’s
sage recommendations. This is the first study that utilizes a second
ataset established from a different source to validate the quality and
obustness of its solution. The practitioners and the device used in this
tudy are entirely independent from the training dataset, which consists
f 1384 measurements.

The thresholds allow for a rupture in 87.80% compared to 92.68%
ith our solution. The difference in sensitivity with the results in
able 2 is 3%, compared to over 20% with the three thresholds
Table 1). Results demonstrate the robustness and quality of the pro-
osed AI-based solution even in the face of new data. Finally, the
RI results showed that the rupture was not qualified for 2 of the 88

atients in this ultimate study. The same observation is made with our
olution but with two different patients and allows us to conclude that

he two solutions are at least equivalent to ACL tears detection.
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Table 3
Results obtained to detect and qualify the type of tears in 169 patients with a GNRB
and MRI result linked to an operative report. Specificity does not exist, as no patients
are included in this database. The incorporation of the accuracy of the type of tear
highlights the most accurate method between MRI, the three alone or the proposed
solution based on ensemble learning to classify the type of tear.

Thresholds New_Method MRI

Accuracy (all diagnosis) 37.56% 62.64% 54.91%
Sensitivity (all diagnosis) 68.84% 93.21% 92.92%
Specificity (all diagnosis) / / /
Precision for partial ACLs 39.79% 50.27% 28.38%
Precision for complete ACLs 35.87% 71.83% 74.95%

4. Discussion

The most important finding of this study is that using three thresh-
olds is not recommended despite previous study results. Indeed, our
diagnostic proposal is better than that of Beaurin F and Beldame
J (Beaurain, 2020) . The absence of pre-selection of data in favor
of a diagnosis and the significant increase in data demonstrate the
limitations of this approach according to the Table 2. The study con-
firms previous observations, particularly regarding the threshold of
1.5 mm, which requires reevaluation (Klouche et al., 2015; Mouarbes
et al., 2018). Machine Learning applications combined with laxity
measurement statistics allow for a much more precise approach (+5%).

he main strength of the created method is the sensitivity and speci-
icity ratio of around 94%, with a detection rate of partial ACL tears
eyond 55% (Table 2). The PPV (positive predictive value) and NPV
negative predictive value) demonstrate that relying solely on laxity is
nsufficient to ensure a reliable diagnosis in a patient.

Considering additional parameters like sex, grip strength, or laxity
t different translating force demonstrated that GNRB® offers a more
ccurate solution than MRI (Table 3). An explanation is the better
ifferentiation between partial and complete ACL tears (+10%) and
mproved detection of ruptures (+0.3%). Results support the findings

of a 2011 (Van Dyck et al., 2011) study that showed that a standard
protocol 1.5-T MRI performed by experienced radiologists might not be
sufficiently reliable for diagnosing anterior cruciate ligament rupture.
Instead of, comparison with a more recent study demonstrates that the
results are similar to MRI diagnoses (Zhao et al., 2020). The accuracy is
92% for our proposed solution compared to 95% for MRI, favoring the
latter. Detection of ALC tears (partial and total) shows 95% for MRI
and 93% for GNRB (Table 2). The results for distinguishing between
the two types of ruptures are very high compared to those reported
in the literature (Table 1). This difference can be attributed to more
recent data and the smaller number of data points available, with only
66 cases having an MRI compared to 256 (169/1384 + 88 from Brest)
in this study. The study (Zhao et al., 2020) had to exclude patients
due to strict selection criteria, such as a history of knee pathologies.
Also, some people cannot do IRM as pregnant women or individuals
with medical devices that prevent MRI. Further supports the value of
offering an alternative diagnostic solution that is equally accurate, more
cost-effective, and avoids radiation exposure.

The study does not suggest that GNRB® is superior to MRI because
it is essential in clinical practice and cannot be replaced. Furthermore,
the use of conclusions from MRI reports is subject to interpretation.
They may vary depending on factors such as the level of experience of
the radiologist, which could explain the observed differences in results.

The most controversial point is the difference in results between
this study and existing studies. In our case, sensitivity and specificity
with multiple datasets (test base, MRI base, validation base) vary by
a maximum of 3%, which is low compared with 20% in published
studies (Table 1). The data selection process is unclear or not explained,
which may explain the discrepancies in accuracy. Furthermore, it relies
solely on laxity to establish a diagnosis with varying translation forces
between 134N and 250N (Jenny et al., 2013; Klouche et al., 2015;
Mouarbes et al., 2018). Measurements above 134 N proved impossible
8

for most patients, making it difficult to interpret these measurements
in a generalized way. Laxity is a parameter that can vary greatly
depending on the configuration of the GNRB® (Bouguennec et al.,
2015). Therefore, it is only possible to demonstrate the usefulness of
the proposed solution based on our data.

However, it should be noted that all results were verified on 1384
different measurements with cross-validation and confirmed with 88
new patients. No other study has conducted such in-depth analyses and
comparisons due to the limited availability of GNRB® measurements.
For example, a comparative study between 49 (Di Iorio et al., 2014)
and 118 (Klouche et al., 2015) patients will be inconclusive due to a
large data gap.

The new diagnostic method based on this device and related analy-
ses thus demonstrates the robustness and relevance of the solution for
detecting and characterizing an ACL tear. Only the decision to retain
values with tightening differences of more than 40 N, which is twice
the limit value for accepting two laxity measurements as valid (Théo
Cojean et al., 2023), may be open to discussion. The intention was to
avoid having dominant parameters in the decision-making process, but
their exclusion could potentially yield better results. Hence, it would be
beneficial for all studies to share their data within a regulated research
framework to establish a standardized test base. New DB could lead to a
more coherent comparison of solutions and enable the development of
a more effective diagnostic method with a diverse and comprehensive
data set.

The association of two machine learning models with clear advan-
tages is debatable, especially as the three thresholds have not been
re-evaluated. A single model could have been sufficient to demonstrate
the contribution of AI in diagnostics. However, this approach allows
the creation of a new model that appears to be the best solution for
leveraging dynamic laximetry device measurements such as GNRB,
with gains of around 10%. Nevertheless, a significant improvement
is possible by dynamically determining the three laxity thresholds to
modify those used to reinforce diagnostic decisions.

It may be necessary to review the choice of hyperparameters, which
are automatically selected to maximize the precision-to-loss ratio dur-
ing training and testing. Although this choice allows for the quick
addition of new data and evaluation of new sets, a manual or more
statistical approach may increase the quality of diagnostics. Exploring
the impact of all the hyperparameters suggested by Scikit-Learn and
not just the most important ones (e.g. neighbor number for a Knn) is
an area for further improvement.

The training dataset contains less than 30% of patients with rupture
among the 1384 recorded data, which may explain why the model has
an accuracy of approximately 62% for this type of injury. Therefore, ob-
taining more laxity measurements of patients with this type of rupture
qualified by arthroscopy would be necessary. Increasing the data should
result in a more accurate and robust model for a more comprehensive
evaluation. The measurements from the other trials are not published,
which is a limitation because collaboration could help improve this
solution and find new ones. In the future, we need to find a way for
each study to share its data following the rules of the ethics committees.

An alternative is to apply oversampling to increase the sample size
could improve accuracy. The fear of creating bias in the database and
lack of technical knowledge currently excludes artificial balancing of
data choices. Another possible improvement would be to dynamically
determine three laxity thresholds and modify those used as diagnostic
aids.

Finally, all studies lack a ‘‘human’’ dimension that could be fur-
ther explored, such as the physician’s opinion on knee instability.
Adding other methods evaluated by physicians using Jerk, Lachman, or
MRI results could also improve accuracy. There are various diagnostic
methods, but they always are compared and never combined.

5. Conclusion

In conclusion, this study demonstrates that including only thresh-
old parameter based on difference laxity measurements performed
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at 134 N could be not enough and impact the diagnostic accuracy.
The proposed solution counteract this bias and significantly improve
the differentiation between healthy and torn ACLs by using a robust
and accurate machine learning model in decision-making, including
more parameters such as clamping force, sex, laxity results at different
forces. Through a comprehensive analysis of a large dataset spanning
multiple years, a more robust and accurate method (+6%) has been
developed compared to static laxity interpretation. The choice of not
directly confronting existing solutions or models, but proposing a bold
combination, leads to the most robust and accurate diagnosis solution.

Due to its reduced cost and high precision, this dynamic laximetry
device should be recommended as an alternative to MRI when used
with our new diagnostic process. The results show that the solution is
equivalent to this diagnostic standard and feasible everywhere due to
the absence of radiation. However, operating on a patient solely based
on a positive GNRB® or MRI test without considering their symptoms
is not recommended, as it is possible to live with ACL tears. Therefore,
we recommend using machine learning for diagnosis, combining the
expertise and empathy of a physician that no algorithm can currently
replicate.
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